AD-A266 196

NTATION PAGE

Form Approved
OMB No 0704-0188

Tated 10 summade 1 notur per response including the name for the kwang instructions describing wisting data 1000 established for a control of the control of

1. AGENCY USE ONLY (Leave blank)	4. HEPORT DATE	3. REPORT TYPE A	NO DATES COVERED
	June, 1993	preprint	
4. TITLE AND SUBTITLE Homogeneously traceable results in claw-free graphs			5. FUNDING NUMBERS N00014-91-J-1142
6. AUTHOR(S)			- Williams
Lisa R. Markus			
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		18. PERFORMING ORGANIZATION
Dept. of Mathematics Vanderbilt University Nashville, TN 37240			REPORT NUMBER
9. SPONSORING: MONITORING AGENC	/ NAME(S) AND ADDRESS	£5)	i Tu. Szansúring - Manitaring
Mathematical Science: Office of Naval Rese			ACENCY रहत्रेजबर भिर्माज्ञहरू
Arlington, VA 22217		DTIC	
11. SUPPLEMENTARY NOTES		ELECTE	<u>, </u>
		JUN 2 9 1993	
12a. DISTRIBUTION AVAILABILITY STA	TEMENT	A S	A 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELE	ASE:		
13. ABSTRACT (Maximum 200 words)			
A graph is homogeneously starting at v. In this to be homogeneously trav	paper we find a s	ufficient conditi	on for a claw-free graph
•			
14. SUBJECT TERMS	15. NUMBER OF PAGES		
Hamilton path, neighborhood union			26
			16. PRICE CODE
OF REPORT	SECURITY CLASSIFICATION OF THIS PAGE IClassified	19. SECURITY CLASSI OF ABSTRACT unclassified	FICATION 20. LIMITATION OF ABSTRACT

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

HOMOGENEOUSLY TRACEABLE RESULTS IN CLAW-FREE GRAPHS

Ьy

Lisa R. Markus*
Department of Mathematics
Furman University
Greenville, SC 29613

ABSTRACT

A graph G is homogeneously traceable if for each $v \in V(G)$ there is a Hamilton path starting at v. In this paper we find a sufficient condition for a claw-free graph to be homogeneously traceable in terms of a neighbourhood union condition.

Preliminaries

A graph G is said to be homogeneously traceable if for each $v \in V(G)$ there is a Hamilton path starting at v. We will call a path a v-path if it starts at v.

Theorem 1[3]

If G is a 3-connected, claw-free graph such that

$$|N(u) \cup N(v)| > (2p-5)/3$$

for all nonadjacent pairs of vertices u,v then G is homogeneously traceable. \square

Clearly, any graph that is Hamiltonian is also homogeneously traceable.

Theorem 2[4]

If G is a 3-connected, claw-free graph such that

$$|N(u) \cup N(v)| > 11(p-7)/21$$

for all nonadjacent pairs u,v then G is Hamiltonian. \square

So Theorem 1 is a corollary of Theorem 2.

Theorem 3[1]

Let G be a 2-connected graph with

$$|N(u) \cup N(v)| \ge p/2$$

^{*} work supported by ONR Contract #N00014-91-J-1142

for all nonadjacent pairs of vertices u, v. Then either G is Hamiltonian, or G is equal to the Petersen graph, or G is a spanning subgraph of one of the following families:

- a) $K_2 + (K_q \cup K_r \cup K_s)$;
- b) $K_1 + (K_q \cup K_r \cup K_s \cup T)$, where $q, r, s \ge 2$ and T is the edge set of a triangle containing exactly one vertex or K_p, K_q and K_r ;
- c) $K_q \cup K_r \cup K_s \cup T_1 \cup T_2$, where $q, r, s \geq 3$ and T_1 and T_2 are the edge sets of two vertex-disjoint triangles each containing exactly one vertex from K_q, K_r and K_s . \square

This Theorem generalises each of Theorems 1 and 2, since none of the exceptional graphs are 3-connected.

In [5] Lindquester investigated the effect of distance on neighbourhood union conditions.

Theorem 4[4]

Let G be a 2-connected graph with

$$|N(u) \cup N(v)| \ge (2p-1)/3$$

for all pairs of vertices u, v at distance 2. Then G is Hamiltonian.

Results

We will obtain a sufficient condition for a 2-connected, claw-free graph to be homogeneously traceable in terms of the neighbourhood union of vertices at distance 2. First, we will need the following Lemma.

Lemma 5

Let G be a 2-connected graph. Let $P = v_1, v_2, ..., v_m$ be a longest v_m path. Then there is a path $P' = u_1, u_2, ..., u_m = v_m$ with V(P') = V(P) such that in P', u_1 is adjacent to some vertex u_{t+1} and not to u_t .

Proof

Let P be a longest v_m -path and suppose that there is no path P' with the required property. Let $Q = u_1, u_2, ..., u_m = v_m$ be a v_m -path with V(Q) = V(P) and the degree of (u_1) as large as possible. Then Q is a longest v_m -path.

Traversing Q from u_1 towards u_m let v_{r+1} be the first vertex to which u_1 is not adjacent. Then u_1 is adjacent to $u_2, u_3, ..., u_r$ and the degree of u_1 is r-1. Then u_1 is not adjacent to any other vertices of P else we can put Q = P' and we're done. Since G is 2-connected, u_r cannot be a cut point. Now if one of $u_2, u_3, ..., u_{r-1}$, say u_k , is adjacent to some $y \notin Q$ we will immediately get the longer v_m -path

$$u_m, u_{m-1}, ..., u_{k+1}, u_1, u_2, ..., u_k, y$$
.

Thus one of $u_2, u_3, ..., u_{r-1}$, say u_n , is adjacent to a vertex u_q with q > r. Note that u_1 is adjacent to u_{n+1} . Take the path

$$W = u_m, u_{m-1}, ..., u_q, u_{q-1}, ..., u_{n+1}, u_1, u_2, ..., u_n.$$

This is also a longest v_m -path with V(W) = V(P). Now if u_n is not adjacent to all of $u_{n-1}, u_{n-2}, ..., u_1, u_{n+1}, u_{n+2}, ..., u_q$ then we have a path with the required property. On the other hand, if u_n is adjacent to all of these, then the degree of u_n is at least q-1 > r-1 and we have a longest v_m -path where the degree of the first vertex, u_n is greater than the degree of the first vertex of Q, contradicting the choice of Q. \square

Theorem 6

Let G be a 2-connected, claw-free graph with

$$|N(u) \cup N(v)| > (p-3)/2$$

for all pairs of vertices u, v at distance 2. Then G is homogeneously traceable.

Proof

Let G be a 2-connected, claw-free graph with $|N(u) \cup N(v)| > (p-3)/2$ for every pair of vertices u,v at distance 2. Let $z \in V(G)$. We aim to find a Hamilton path with end vertex z. Let $P = v_1, v_2, ..., v_m, v_m = z$, be a longest path in G with end vertex z. If m = p we are done, so suppose m < p. Then there is a vertex $x, x \notin P$. Since G is 2-connected, there are at least two openly disjoint paths from x to P. Let the two end vertices of any set of such paths with the lowest subscripts be v_k, v_l , where k < l. Without loss of generality we can assume $xv_l \in E(G)$. Since G is claw-free and 1 < k < m, we have $v_{k-1}v_{k+1} \in E(G)$. Now $l \neq k+2$ since if l = k+2 we get the longer v_m -path

$$v_m, v_{m+1}, ..., v_l, x, v_k, v_{k+1}, v_{k-1}, v_{k-2}, ..., v_1.$$

Thus l > k + 2.

Now by Lemma 5 we can assume that there is a vertex v_t so that v_1 is adjacent to v_{t+1} and not to v_t . Choose the smallest t for which this happens.

Now $t \neq k$ since this would imply v_1 is adjacent to v_{k+1} and we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_1, v_2, ..., v_k, x$$
.

Also $t \neq k+1$ since this would imply v_1 is adjacent to v_{k+2} and we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+2}, v_1, v_2, ..., v_{k-1}, v_{k+1}, v_k, x$$

Thus $t \neq k, k+1$.

Traversing P from v_1 towards v_m , let v_{r+1} be the first vertex to which v_1 is not adjacent. Then v_1 is adjacent to $v_2, v_3, ..., v_r$, and not adjacent to $v_{r+1}, v_{r+2}, ..., v_t$. Now r < k since if v_1 is adjacent to v_k we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_1, v_2, ..., v_{k-1}, v_{k+1}, v_{k+2}, ..., v_{l-1}. \\$$

Thus r < k.

We will arrive at a contradiction by showing that there is a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{l-1}) \cup N(x))$. Note that v_1, v_t are vertices at distance 2 by the definition of t. Also x, v_{l-1} are distance 2 apart since $xv_l \in E(G)$ and $xv_{l-1} \notin E(G)$.

Let $y \in N(v_1) \cup N(v_t)$. Suppose $y \notin P$. Then since P is a longest v_m -path, $y \notin N(v_1)$ and if $y \in N(v_t)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_t, y$$
.

Thus we have $y \in P$, and so $y = v_s$ for some s.

We will now consider 2 cases for l:

Case 1: Suppose l < m. Note that since G is claw-free and P is a longest v_m -path we have $v_{l-1}v_{l+1} \in E(G)$.

We have already shown that $t \neq k, k+1$. By similar arguments, $t \neq l, l+1$. We will now show $t \neq l-1$. Suppose t = l-1. Then v_1 is adjacent to v_l and we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{l+1}, v_{l-1}, v_{l-2}, ..., v_1, v_l, x$$
.

Thus $t \neq l - 1$.

We have also previously shown that $l \neq k+2$. We will now show that $l-1 \neq k+2$. Suppose l-1=k+2. Then we will get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{l+1}, v_{l-1}, v_l, x, v_k, v_{k+1}, v_{k-1}, v_{k-2}, ..., v_1.$$

Thus $l-1 \neq k+2$.

Let $v_s \in N(v_1) \cup N(v_t)$. Now clearly $s \neq 1, t$ by the definition of t. We claim $s \neq k, l-1, l$.

Suppose first s = k. Now if $v_k \in N(v_1)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_{k-1}, v_{k-2}, ..., v_1, x$$
.

So suppose $v_k \in N(v_t)$. Then for t < k we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_{k-1}, v_{k-2}, ..., v_{t+1}, v_1, v_2, ..., v_t, v_k, x$$

and for t > k we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{k-1}, v_{k+1}, v_{k+2}, ..., v_t, v_k, x.$$

Thus $s \neq k$. By similar arguments, we can show $s \neq l$.

Now suppose s = l - 1. If $v_{l-1} \in N(v_1)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_1, v_{l-1}, v_{l-2}, ..., v_{k+1}.$$

So suppose $v_{l-1} \in N(v_t)$. Then for t < k we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_{l+1}, v_1, v_2, ..., v_t, v_{l-1}, v_{l-2}, ..., v_{k+1},$$

for k < t < l we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{l-1}, v_t, v_{t-1}, ..., v_{k+1}$$

and for t > l we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{t-1}, v_t, v_{t-1}, ..., v_l, x$$

Thus $s \neq l - 1$.

Let $v_s \in N(v_1)$. Now $s \neq k+1$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_1, v_2, ..., v_k, x$$
.

Similarly, $s \neq l+1$. Now if $v_{s-1} \in N(x)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_1, v_2, ..., v_{s-1}, x$$
.

Also, $v_{s-1} \notin N(v_{l-1})$ for if it were, for if 1 < s < k we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_1, v_s, v_{s+1}, ..., v_{k-1},$$

if k+1 < s < l-1 we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_1, v_s, v_{s+1}, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_{k+1}$$

and if s > l + 1 we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_1, v_2, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_l, x$$
.

Thus if $v_s \in N(v_1)$ we have $v_{s-1} \notin N(v_{l-1}) \cup N(x)$.

Again consider $v_s \in N(v_1)$. For k+1 < s < m we have $v_{s+1} \notin N(x)$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{s+1}, x, v_k, v_{k-1}, ..., v_1, v_s, v_{s-1}, ..., v_{k+1}.$$

For l+1 < s < m, $v_{s+1} \notin N(v_{l-1})$ else we get the longer v_m - path

$$v_m, v_{m-1}, ..., v_{s+1}, v_{l-1}, v_{l-2}, ..., v_1, v_s, v_{s-1}, ..., v_l, x$$
.

There are now 3 possible locations for t: 1 < t < k, k + 1 < t < l - 1 and t > l + 1. We will now consider these 3 cases for t.

Case 1.1: Suppose t > l + 1.

Let $v_s \in N(v_1) \cup N(v_t)$. We have already shown that $s \neq 1, t, k, l-1, l$. We now claim $s \neq k+1$. Note that we have already shown that $v_{k+1} \notin N(v_1)$. So suppose $v_{k+1} \in N(v_t)$. Then we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_k, x, v_l, v_{l+1}, ..., v_t, v_{k+1}, v_{k+2}, ..., v_{l-1}$$

So $v_{k+1} \notin N(v_t)$ and therefore $s \neq k+1$.

We consider 2 subcases:

Case 1.1.1: Assume v_{l-1} is adjacent to some vertex v_q with q < k. First we claim $q \neq k-1$ since if $v_{k-1} \in N(v_{l-1})$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_{k-1}, v_{k-2}, ..., v_1$$

Thus q < k-1. Also, $q \neq k-2$ for if $v_{k-2} \in N(v_{l-1})$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, v_{k+1}, v_{k+2}, ..., v_{l-1}, v_{k-2}, v_{k-3}, ..., v_1.$$

So we have q < k - 2.

Recall $v_s \in N(v_1) \cup N(v_t)$. Now $s \neq k-1$ since if $v_{k-1} \in N(v_1)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_q, v_{q+1}, ..., v_{k-1}, v_1, v_2, ..., v_{q-1}$$

and if $v_{k-1} \in N(v_t)$ then we will get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{k-1}, v_t, v_{t-1}, ..., v_k, x.$$

So $s \neq k-1$.

We will now construct the 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{l-1}) \cup N(x))$. First suppose s < k-1 or k+1 < s < l-1. Now $v_{s-1} \notin N(x)$ by the choice of k, l.

Again recall $v_s \in N(v_1) \cup N(v_t)$. Suppose $v_s \in N(v_1)$. We have shown above that $v_{s-1} \notin N(v_{l-1}) \cup N(x)$. Now suppose $v_s \in N(v_t)$. Then $v_{s-1} \notin N(v_{l-1})$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{s-1}, v_{l-1}, v_{l-2}, ..., v_s, v_t, v_{t-1}, ..., v_l, x$$

So for the case s < k, k + 2 < s < l - 1 let v_{s-1} be the vertex corresponding to v_s in the 1:1 mapping.

Now suppose l < s < t or t < s < m.

Suppose $v_s \in N(v_1)$. Then we have shown above that $v_{s+1} \notin N(v_{l-1}) \cup N(x)$. So suppose $v_s \in N(v_t)$. Then $v_{s+1} \notin N(v_{l-1})$ else for s < t we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{l-1}, v_{s+1}, v_{s+2}, ..., v_t, v_s, v_{s-1}, ..., v_l, x$$

and for s > t we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{s+1}, v_{l-1}, v_{l-2}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_s, v_t, v_{t-1}, ..., v_l, x$$

Also $v_{s+1} \notin N(x)$ for if it were for s < t we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_s, v_t, v_{t-1}, ..., v_{s+1}, x$$

and for s > t we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{s+1}, x, v_k, v_{k-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_s, v_t, v_{t-1}, ..., v_{k+1}.$$

For the case l < s < t, t < s < m let v_{s+1} correspond to v_s in the desired 1:1 mapping.

Note that we have not found an image point corresponding to v_m . We claim to have found a 1:1 mapping from $N(v_1) \cup N(v_t) - v_m$ to $V(G) - (N(v_{l-1}) \cup N(x)) - \{v_{k-2}, v_{k-1}, v_{l-1}, x\}$.

Clearly we have shown a 1:1 mapping from $N(v_1) \cup N(x) - v_m$ to a subset S of $V(G) - (N(v_{l-1}) \cup N(x))$.

We now claim $v_{k-2}, v_{k-1}, v_{l-1}, x \notin S$.

First suppose $v_{k-2} \in S$. Then $v_{k-2} = v_{s-1}$ or v_{s+1} for some s. But $v_{k-2} = v_{s-1}$ implies s = k-1 and $v_{k-2} = v_{s+1}$ implies s = k-3 > l, both contradictions. Thus $v_{k-2} \notin S$.

Next suppose $v_{k-1} \in S$. Then by the way we have constructed our 1:1 mapping we have $v_{k-1} = v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_{k-1} = v_{s-1}$ implies s = k, but we have already shown that $s \neq k$. Also $v_{k-1} = v_{s+1}$ implies s = k-2 > l, a contradiction. So $v_{k-1} \notin S$.

Now suppose $v_{l-1} \in S$. Then $v_{l-1} = v_{s-1}$ or v_{s+1} for some s with $v_s \in N(v_1) \cup N(v_t)$. But $v_{l-1} = v_{s-1}$ implies s = l, a contradiction and $v_{l-1} = v_{s+1}$ implies s = l-2 > l, again giving a contradiction. Hence $v_{l-1} \notin S$.

Finally suppose $x \in S$. Then x is the image point of some y where $y \in N(v_1) \cup N(v_t) - v_m$. But all the image points are on P and $x \notin P$. Thus $x \notin S$.

Now it can be easily seen that $x, v_{l-1} \notin N(v_{l-1}) \cup N(x)$. Also, clearly $v_{k-1} \notin N(x)$ and if $v_{k-1} \in N(v_{l-1})$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_{k-1}, v_{k-2}, ..., v_1.$$

Again, by the choice of $k, v_{k-2} \notin N(x)$ and if $v_{k-2} \in N(v_{l-1})$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, v_{k+1}, v_{k+2}, ..., v_{l-1}, v_{k-2}, v_{k-3}, ..., v_1.$$

Thus $v_{k-2}, v_{k-1}, v_{l-1}, x \notin N(v_{l-1}) \cup N(x)$.

We get

$$(p-3)/2 - 1 < |N(v_1) \cup N(v_t) - v_m|$$

$$\leq |V(G) - (N(v_{l-1}) \cup N(x)) - \{x, v_{k-2}, v_{k-1}, v_{l-1}\}|$$

$$$$

a contradiction.

Case 1.1.2: So we can assume v_{l-1} is not adjacent to any vertex v_q where q < k.

Recall that $v_s \in N(v_1) \cup N(v_t)$ and $s \neq 1, t, k, k+1, l-1, l$ We will construct a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{l-1}) \cup N(x))$.

First suppose s < k. Then by the choice of k, $v \notin N(x)$ and by the hypothesis of Case 1.1.2, $v \notin N(v_{l-1})$. So let $v \in N(v_l)$ correspond to itself when s < k.

Next suppose k + 1 < s < l - 1. Then by the choice of $t, v_s \notin N(v_1)$ and so assume $v_s \in N(v_l)$. Now $v_{s-1} \notin N(x)$ by the choice of k, l and $v_{s-1} \notin N(v_{l-1})$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{s-1}, v_{l-1}, v_{l-2}, ..., v_s, v_t, v_{t-1}, ..., v_l, x.$$

So let v_{s-1} correspond to v_s for the case k+1 < s < l-1.

Now let l < s < t. Again by the choice of t, $v_s \notin N(v_1)$. So assume $v_s \in N(v_t)$. Now $v_{s+1} \notin N(x)$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_s, v_t, v_{t-1}, ..., v_{s+1}, x.$$

Also $v_{s+1} \notin N(v_{l-1})$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{l-1}, v_{s+1}, v_{s+2}, ..., v_t, v_s, v_{s-1}, ..., v_l, x.$$

So for l < s < t let v_{s+1} be the correspondent of v_s .

Finally suppose $t < s \le m$.

Recall that $v_s \in N(v_1) \cup N(v_t)$. We will first suppose $v_s \in N(v_1)$, and show that $v_s \notin N(v_{l-1}) \cup N(x)$.

First suppose s < m. Then $v_s \notin N(x)$ for if it were we would have $v_{s-1}v_{s+1} \in E(G)$ since G is claw-free and get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{s+1}, v_{s-1}, v_{s-2}, ..., v_1, v_s, x.$$

Now suppose s=m. Then $v_s \notin N(x)$ for if it were we would have $v_1, v_{m-1}, x \in N(v_m)$. Now G is claw-free and $v_1x, v_{m-1}x \notin E(G)$ so we must have $v_{m-1} \in N(v_1)$. But then we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_1, v_{m-1}, v_{m-2}, ..., v_{k+1}.$$

So for $v_s \in N(v_1)$ for $t < s \le m$ we have $v_s \notin N(x)$.

Recall that $t < s \le m$ and $v_s \in N(v_1)$. We have $v_s \notin N(v_{l-1})$ for if it were we would have $v_1, v_{l-1}, v_{s-1} \in N(v_s)$. Since G is claw-free and $v_1v_{l-1} \notin E(G)$ we have either v_1v_{s-1} or $v_{l-1}v_{s-1} \in E(G)$. But if $v_1v_{s-1} \in E(G)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_{l-1}, v_{l-2}, ..., v_1, v_{s-1}, v_{s-2}, ..., v_l, x$$

and if $v_{l-1}v_{s-1} \in E(G)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_1, v_2, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_l, x$$
.

So we have shown that for $v_s \in N(v_1)$, $t < s \le m$ we have $v_s \notin N(v_{l-1}) \cup N(x)$.

Next suppose $v_s \in N(v_t)$ where $t < s \le m$. Again, we will show that $v_s \notin N(v_{l-1}) \cup N(x)$. Now we can assume s > t+1, since if s = t+1 we have $v_s = v_{t+1} \in N(v_1)$, and we have just shown $v_s = v_{t+1} \notin N(v_{t-1}) \cup N(x)$.

First suppose t+1 < s < m. Then $v_s \notin N(x)$ for if it were we would have $v_{s-1}v_{s+1} \in E(G)$ since G is claw-free and get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{s+1}, v_{s-1}, v_{s-2}, ..., v_{t+1}, v_1, v_2, ..., v_t, v_s, x.$$

Now suppose s = m. Then $v_s \notin N(x)$ for if it were we would have $v_t, v_{m-1}, x \in N(v_m)$. Now G is claw-free and $v_t x, v_{m-1} x \notin E(G)$ so we must have $v_{m-1} \in N(v_t)$. But then we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{m-1}, v_t, v_{t-1}, ..., v_{k+1}.$$

So for $v_s \in N(v_t)$ and $t+1 < s \le m$, we have shown $v_s \notin N(x)$.

Again recall $t+1 < s \le m$, where $v_s \in N(v_t)$. We have $v_s \notin N(v_{l-1})$ for if it were we would have $v_t, v_{l-1}, v_{s-1} \in N(v_s)$. Since G is claw-free and $v_t v_{l-1} \notin E(G)$ we have either $v_t v_{s-1}$ or $v_{l-1} v_{s-1} \in E(G)$. But if $v_t v_{s-1} \in E(G)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_{l-1}, v_{l-2}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{s-1}, v_t, v_{t-1}, ..., v_l, x$$

and if $v_{l-1}v_{s-1} \in E(G)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_t, v_{t-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_{s-1}, v_{s-2},$$

$$\dots, v_{t+1}, v_1, v_2, \dots, v_{k-1}.$$

For $v_s \in N(v_t)$, $t+1 < s \le m$ we have that $v_s \notin N(v_{l-1})$. Thus for $t < s \le m$ let v_s be the correspondent of v_s in our 1:1 mapping.

We claim we have found a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{t-1}) \cup N(x)) - \{v_1, v_{t-1}, x\}$. Clearly $v_1, v_{t-1}, x \notin N(v_{t-1}) \cup N(x)$. We have shown a 1:1 mapping from $N(v_1) \cup N(v_t)$ to a subset S of $V(G) - (N(v_{t-1}) \cup N(x))$. We now claim $v_1, v_{t-1}, x \notin S$.

Suppose $v_1 \in S$. Then $v_1 = v_s, v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_1 = v_s$ implies s = 1, $v_1 = v_{s-1}$ implies s = 2 > k+1 and $v_1 = v_{s+1}$ implies s = 0, all contradictions. Thus $v_1 \notin S$.

Next suppose $v_{l-1} \in S$. Then $v_{l-1} = v_s, v_{s-1}$ or v_{s+1} for some s. But $v_{l-1} = v_s$ implies s = l-1, $v_{l-1} = v_{s-1}$ implies s = l and $v_{l-1} = v_{s+1}$ implies s = l-2 > l, all contradictions. Thus $v_{l-1} \in S$.

Finally $x \notin S$ for all the image points are in P and $x \notin P$.

We get

$$(p-3)/2 < |N(v_1) \cup N(v_t)|$$

$$\leq |V(G) - (N(v_{t-1}) \cup N(x)) - \{v_1, v_{t-1}, x\}|$$

$$$$

a contradiction.

Case 1.2: Suppose k+1 < t < l-1. Again, we will arrive at a contradiction by showing that there is a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{l-1}) \cup N(x))$. Recall that if $y \in N(v_1) \cup N(v_t)$ then $y \in P$ and $y = v_s$ for some s. We have shown that $s \neq 1, t, k, l-1, l$. We now claim $s \neq l+1, l+2$. For suppose $v_{l+1} \in N(v_1)$, then we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{l+1}, v_1, v_2, ..., v_l, x$$

and if $v_{l+2} \in N(v_1)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{l+2}, v_1, v_2, ..., v_{l-1}, v_{l+1}, v_l, x$$
.

(Recall that $v_{l-1}v_{l+1} \in E(G)$ since G is claw-free.) Also if $v_{l+1} \in N(v_t)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{l+1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_l, x$$

and if $v_{l+2} \in N(v_l)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{l+2}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{l-1}, v_{l+1}, v_l, x.$$

Thus $s \neq l + 1, l + 2$.

We will now consider 2 cases:

Case 1.2.1: Assume v_{l-1} is adjacent to some vertex v_q where q < k.

As in Case 1.1.1, we have q < k - 2.

We will now show $s \neq k-1, k-2$ where $v_s \in N(v_1) \cup N(v_t)$.

Suppose $v_{k-1} \in N(v_1)$. Then we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_q, v_{q-1}, ..., v_1, v_{k-1}, v_{k-2}, ..., v_{q+1}.$$

Now suppose $v_{k-2} \in N(v_1)$. Then we will get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, v_{k+1}, v_{k+2}, ..., v_{l-1}, v_q, v_{q-1}, ..., v_1, v_{k-1}, v_{k-2}, ..., v_{q+1}$$

Next suppose $v_{k-1} \in N(v_t)$. Then we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{k-1}, v_t, v_{t-1}, ..., v_k, x$$
.

Finally suppose $v_{k-2} \in N(v_t)$. Then we will get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{k-2}, v_t, v_{t-1}, ..., v_{k+1}, v_{k-1}, v_k, x.$$

Thus $s \neq k - 1, k - 2$.

We will now construct a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{l-1}) \cup N(x))$. Recall that $v_t \in N(v_1) \cup N(v_t)$.

Suppose $s \leq r$. Then $v_s \in N(v_1)$. Now $v_{s-1} \notin N(x)$ by the choice of k and $v_{s-1} \notin N(v_{l-1})$ else we get the longer v_m -path

$$v_m, v_{m-1}, \dots, v_l, x, v_k, v_{k-1}, \dots, v_s, v_1, v_2, \dots, v_{s-1}, v_{l-1}, v_{l-2}, \dots, v_{k+1}$$

So for $s \leq r$, let v_{s-1} be the correspondent of v_s in our 1:1 mapping.

Now suppose r < s < k-2. Then $v_s \notin N(v_1)$ and therefore $v_s \in N(v_t)$ by the choice of r, t. By the choice of $k, v_{s+1} \notin N(x)$. Also $v_{s+1} \notin N(v_{l-1})$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, \dots, v_l, x, v_k, v_{k-1}, \dots, v_{s+1}, v_{l-1}, v_{l-2}, \dots, v_{t+1}, v_1, v_2, \dots, v_s, v_t, v_{t-1}, \dots, v_{k+1}, \dots, v_{t+1}, \dots, v_{t+1},$$

Thus for r < s < k-2, let v_{s+1} correspond to v_s in the 1:1 mapping.

Next suppose k < s < t. Then by the choice of t, $v_s \notin N(v_1)$. Suppose $v_s \in N(v_t)$. Then $v_{s+1} \notin N(x)$ by the choice of l and $v_{s+1} \notin N(v_{l-1})$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{l-1}, v_{s+1}, v_{s+2},$$

$$..., v_t, v_s, v_{s-1}, ..., v_{k+1}.$$

So let v_{s+1} be the correspondent of v_s when k < s < t.

Finally suppose t < s < l - 1 or $l + 2 < s \le m$.

First suppose $v_s \in N(v_1)$. Then $v_{s-1} \notin N(v_{l-1}) \cup N(x)$ as above. So suppose $v_s \in N(v_t)$. Then $v_{s-1} \notin N(x)$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{s-1}, x.$$

Also $v_{s-1} \notin N(v_{l-1})$ for suppose not. Then for s < l-1 we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{s-1}, v_{l-1}, v_{l-2},$$

$$..., v_s, v_t, v_{t-1}, ..., v_{k+1}$$

and for s > l + 2 we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_t, v_{t-1}, ..., v_l, v_{t+1}, v_{t+2}, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_l, x.$$

So for t < s < l-1 or $l+2 < s \le m$, let v_{s-1} correspond to v_s in the 1:1 mapping.

Note that v_t has been chosen as an image point twice, once for the case k < s < t and again for the case t < s < l-1. We claim we have shown the existence of a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to $V(G) - (N(v_{l-1}) \cup N(x)) - \{v_{k-1}, v_{k+1}, v_{l-1}, x\}$. Clearly we have shown a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to a subset S of $V(G) - (N(v_{l-1}) \cup N(x))$. We now claim $v_{k-1}, v_{k+1}, v_{l-1}, x \notin S$.

Suppose $v_{k-1} \in S$. Then $v_{k-1} = v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(x)$. But $v_{k-1} = v_{s-1}$ implies s = k and $v_{k-1} = v_{s+1}$ implies s = k-2, both contradictions. Thus $v_{k-1} \notin S$.

Next suppose $v_{k+1} \in S$. Then $v_{k+1} = v_{s-1}$ or v_{s+1} for some s. But $v_{k+1} = v_{s-1}$ implies $s = k+2 \le r$ or s = k+2 > t, both contradictions since r < k and t > k+1. Also $v_{k+1} = v_{s+1}$ implies s = k another contradiction. Thus $v_{k+1} \notin S$.

Now suppose $v_{l-1} \in S$. Then $v_{l-1} = v_{s-1}$ or v_{s+1} for some s. But $v_{l-1} = v_{s-1}$ implies s = l and $v_{l-1} = v_{s+1}$ implies s = l - 2 < t, both contradictions. Thus $v_{l-1} \notin S$.

Finally $x \notin S$ since all the image points are in P and $x \notin P$.

Clearly $v_{l-1}, x \notin N(v_{l-1}) \cup N(x)$. Also $v_{k-1}, v_{k+1} \notin N(x)$ and earlier in this case we showed $v_{k-1} \notin N(v_{l-1})$. Now $v_{k+1} \notin N(v_{l-1})$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, \dots, v_l, x, v_k, v_{k-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{l-1}, v_{k+1}, v_{k+2}, \dots, v_t.$$

Thus $v_{k-1}, v_{k+1}, v_{l-1}, x \notin N(v_{l-1}) \cup N(x)$.

Thus we have

$$(p-3)/2 - 1 < |N(v_1) \cup N(v_t) - v_{t-1}|$$

$$\leq |V(G) - (N(v_{l-1}) \cup N(x)) - \{v_{k-1}, v_{k+1}, v_{l-1}, x\}|$$

$$$$

a contradiction.

Case 1.2.2: So we can suppose v_{l-1} is not adjacent to any vertex q where q < k.

Let $v_s \in N(v_1) \cup N(v_t)$. We will construct a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{l-1}) \cup N(x))$.

First suppose 1 < s < k. Then by the choice of $k, v_s \notin N(x)$ and by the hypothesis $v_s \notin N(v_{l-1})$. So for 1 < s < k, let v_s correspond to itself in the 1:1 mapping.

Next suppose k < s < t. Then by the choice of t, $v_s \notin N(v_1)$ so assume $v_s \in N(v_t)$. Now $v_{s+1} \notin N(x)$ by the choice of k, l and $v_{s+1} \notin N(v_{l-1})$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{l-1}, v_{s+1}, v_{s+2},$$

$$..., v_t, v_s, v_{s-1}, ..., v_{k+1}.$$

For k < s < t, let v_{s+1} correspond to v_s in our 1:1 mapping.

Finally suppose t < s < l - 1 or $l + 2 < s \le m$.

First suppose $v_s \in N(v_1)$. Then as above, $v_{s-1} \notin N(v_{l-1}) \cup N(x)$. So suppose $v_s \in N(v_t)$. Then $v_{s-1} \notin N(x)$ else we get the longer v_m -path

$$v_m, v_{m-1}, \dots, v_s, v_t, v_{t-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{s-1}, x$$
.

Also $v_{s-1} \notin N(v_{l-1})$ or else for s < l-1 we get the longer v_m -path

$$v_m, v_{m-1}, \dots, v_l, x, v_k, v_{k-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{s-1}, v_{l-1}, v_{l-2},$$

$$..., v_s, v_t, v_{t-1}, ..., v_{k+1}$$

and for s > l + 2 we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_l, x$$

So for t < s < l-1 or $l+2 < s \le m$, let v_{s-1} correspond to v_s in the 1:1 mapping.

Note that v_t has been chosen as an image point twice, once for the case k < s < t and again for the case t < s < l-1. We claim we have shown the existence of a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to $V(G) - (N(v_{l-1}) \cup N(x)) - \{v_1, v_{k+1}, v_{l-1}, x\}$. Clearly we have shown a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to a subset S of $V(G) - (N(v_{l-1}) \cup N(x))$. We now claim $v_1, v_{k+1}, v_{l-1}, x \notin S$.

Suppose $v_1 \in S$. Then $v_1 = v_s, v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_1 = v_s$ implies $s = 1, v_1 = v_{s-1}$ implies s = 2 > t and $v_1 = v_{s+1}$ implies s = 0, all contradictions. Thus $v_1 \notin S$.

Next suppose $v_{k+1} \in S$. Then $v_{k+1} = v_s, v_{s-1}$ or v_{s+1} for some s. But $v_{k+1} = v_s$ implies s = k+1 < k, $v_{k+1} = v_{s-1}$ implies s = k+2 > t and $v_{k+1} = v_{s+1}$ implies s = k, all contradictions. Thus $v_{k+1} \notin S$.

Now suppose $v_{l-1} \in S$. Then $v_{l-1} = v_s, v_{s-1}$ or v_{s+1} for some s. But $v_{l-1} = v_s$ implies s = l-1 and $v_{l-1} = v_{s-1}$ implies s = l both contradictions. Now $v_{l-1} = v_{s+1}$ implies s = l-2 < t, but by Case 1.2 t < l-1, a contradiction. Thus $v_{l-1} \notin S$.

Finally $x \notin S$ since all the image points are in P and $x \notin P$.

Clearly $v_1, v_{l-1}, x \notin N(v_{l-1}) \cup N(x)$. Also $v_{k+1} \notin N(x)$ and $v_{k+1} \notin N(v_{l-1})$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, \dots, v_l, x, v_k, v_{k-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{l-1}, v_{k+1}, v_{k+2}, \dots, v_t.$$

Thus $v_1, v_{k+1}, v_{l-1}, x \notin N(v_{l-1}) \cup N(x)$.

We get

$$(p-3)/2 - 1 < |N(v_1) \cup N(v_t) - v_{t-1}|$$

$$\leq |V(G) - (N(v_{t-1}) \cup N(x)) - \{v_1, v_{k+1}, v_{t-1}, x\}|$$

$$$$

a contradiction.

Case 1.3: Suppose t < k.

Let $v_s \in N(v_1) \cup N(v_t)$. We have already shown $s \neq 1, t, k, l-1, l$. We will now show $s \neq k+1, k+2$ or l+1.

Now $v_{k+1} \notin N(v_1)$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_1, v_2, ..., v_k, x$$

and $v_{k+1} \notin N(v_t)$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_k, x$$

Also $v_{k+2} \notin N(v_1)$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+2}, v_1, v_2, ..., v_{k-1}, v_{k+1}, v_k, x$$

and $v_{k+2} \notin N(v_t)$ else veget the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+2}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{k+1}, v_{k+1}, v_k, x.$$

Finally, $v_{l+1} \notin N(v_1)$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{l+1}, v_1, v_2, ..., v_l, x$$

and $v_{l+1} \notin N(v_t)$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{l+1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_l, x$$

Thus $s \neq k + 1, k + 2$ or l + 1.

We will now consider 2 cases:

Case 1.3.1: Suppose v_{l-1} is adjacent to some vertex v_q where q < k.

Now q < k-2 as in Case 1.1.1. Let $v_s \in N(v_1) \cup N(v_t)$. Now $s \neq k-1$ for if $v_{k-1} \in N(v_1)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_q, v_{q-1}, ..., v_1, v_{k-1}, v_{k-2}, ..., v_{q+1}.$$

Also $v_{k-1} \notin N(v_t)$ for if t > q we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_q, v_{q+1}, ..., v_t, v_{k-1}, v_{k-2}, ..., v_{t+1}, v_1, v_2, ..., v_{q-1}, ...,$$

and if t < q we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_q, v_{q-1}, ..., v_{t+1}, v_1, v_2,$$

$$\dots, v_t, v_{k-1}, v_{k-2}, \dots, v_{q+1}.$$

Finally, if t = q we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{k-1}.$$

Thus $s \neq k-1$.

We will now construct a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{l-1}) \cup N(x))$. First suppose $1 < s \le r$. Then $v_s \in N(v_1)$. By the choice of k, $v_{s-1} \notin N(x)$ and $v_{s-1} \notin N(v_{l-1})$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_1, v_s, v_{s+1}, ..., v_{k-1}.$$

So for $1 < s \le r$, let v_{s-1} correspond to v_s in our 1:1 mapping.

Now suppose r < s < t. Then by the choice of t we have $v_s \notin N(v_1)$ so assume $v_s \in N(v_t)$. By the choice of k, $v_{s+1} \notin N(x)$ and $v_{s+1} \notin N(v_{l-1})$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_{s+1}, v_{s+1}, ..., v_t, v_s, v_{s-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{k-1}.$$

For r < s < t, let v_{s+1} be the correspondent of v_s in our 1:1 mapping.

Next suppose t < s < k-1. By the choice of k we have $v_{s-1} \notin N(x)$. If $v_s \in N(v_1)$ we have already shown $v_{s-1} \notin N(v_{l-1}) \cup N(x)$. If $v_s \in N(v_t)$ we have $v_{s-1} \notin N(v_{l-1})$ else if s > t+1 we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_s, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2},$$

$$..., v_{s-1}, v_{l-1}, v_{l-2}, ..., v_{k+1}$$

and if s = t + 1 we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{k-1}.$$

So in the case t < s < k-1, let v_{s-1} correspond to v_s .

Now suppose k+2 < s < l-1. By the choice of l we have $v_{s-1} \notin N(x)$. If $v_s \in N(v_1)$ then $v_{s-1} \notin N(v_{l-1}) \cup N(x)$. and if $v_s \in N(v_t)$ then $v_{s-1} \notin N(v_{l-1})$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_{t+1}, v_1, v_2, ..., v_t, v_s, v_{s+1}, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_{k+1}.$$

In the case k+2 < s < l-1 let v_{s-1} be the correspondent of v_s in the 1:1 mapping.

Finally suppose $l+1 < s \le m$. Suppose $v_s \in N(v_1)$. Then $v_{s-1} \notin N(v_{l-1}) \cup N(x)$. So suppose $v_s \in N(v_t)$. Then $v_{s-1} \notin N(x)$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{s-1}, x$$

and $v_{s-1} \notin N(v_{l-1})$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_l, x.$$

So for $l+1 < s \le m$ let v_{s-1} be the vertex corresponding to v_s in the 1:1 mapping.

Note that we have considered v_t as an image point twice, once for r < s < t and again for t < s < k-1. We claim we have found a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to $V(G) - (N(v_{l-1}) \cup N(x) - \{v_{k-2}, v_{k-1}, v_{l-1}, x\}$.

Clearly we have shown a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to a subset S of $V(G) - (N(v_{t-1}) \cup N(x))$. We now claim $v_{k-2}, v_{k-1}, v_{t-1}, x \notin S$.

Suppose $v_{k-2} \in S$. Then $v_{k-2} = v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_{k-2} = v_{s-1}$ implies s = k-1, a contradiction. Also $v_{k-2} = v_{s+1}$ implies s = k-3 < t, so t = k-2 or k-1. But t = k-2 implies $v_{t+1} = v_{k-1} \in N(v_1)$ and t = k-1 implies $v_{t+1} = v_k \in N(v_1)$, both contradictions. Thus $v_{k-2} \notin S$.

Now suppose $v_{k-1} \in S$. Then $v_{k-1} = v_{s-1}$ or v_{s+1} for some s. But $v_{k-1} = v_{s-1}$ implies s = k, a contradiction. Also $v_{k-1} = v_{s+1}$ implies s = k-2 < t so t = k-1. But this implies $v_{t+1} = v_t \in N(v_1)$, a contradiction. Thus $v_{k-1} \notin S$.

Next suppose $v_{l-1} \in S$. Then $v_{l-1} = v_{s-1}$ or v_{s+1} for some s. But $v_{l-1} = v_{s-1}$ implies s = l, a contradiction. Also $v_{l-1} = v_{s+1}$ implies s = l-2 < t, so t = l-1 > k, again giving a contradiction. Thus $v_{l-1} \notin S$.

Finally, $x \notin S$ since all image points are on P and $x \notin P$.

Clearly, $v_{l-1}, x \notin N(v_{l-1}) \cup N(x)$ and by the choice of $k, v_{k-2}, v_{k-1} \notin N(x)$. We will now show $v_{k-2}, v_{k+1} \notin N(v_{l-1})$.

If $v_{k-2} \in N(v_{l-1})$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, v_{k+1}, v_{k+2}, ..., v_{l-1}, v_{k-2}, v_{k-3}, ..., v_1$$

(recall $v_{k-1}v_{k+1} \in E(G)$ since G is claw-free) and if $v_{k-1} \in N(v_{l-1})$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k+1}, ..., v_{l-1}, v_{k-1}, v_{k-2}, ..., v_1.$$

Thus $v_{k-1}, v_{k-2} \notin N(v_{l-1})$ and $v_{k-2}, v_{k-1}, v_{l-1}, x \notin N(v_{l-1}) \cup N(x)$. We get

$$(p-3)/2 - 1 < |N(v_1) \cup N(v_t) - v_{t-1}|$$

$$\leq |V(G) - (N(v_{l-1}) \cup N(x)) - \{v_{k-2}, v_{k-1}, v_{l-1}, x\}|$$

$$$$

a contradiction.

Case 1.3.2: So we can assume v_{l-1} is not adjacent to any vertex v_q where q < k. Recall that t < k.

Suppose 1 < s < t or t < s < k. Then by the choice of k, $v_s \notin N(x)$ and by hypothesis $v_s \notin N(v_{l-1})$. So for 1 < s < t or t < s < k let v_s be its own correspondent in the 1:1 mapping.

Now suppose k+2 < s < l-1. By the choice of l, $v_{s-1} \notin N(x)$. If $v_s \in N(v_1)$ then $v_{s-1} \notin N(v_{l-1})$ and if $v_s \in N(v_t)$, then $v_{s-1} \notin N(v_{l-1})$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_l, x, v_k, v_{k-1}, ..., v_{t+1}, v_1, v_2, ..., v_t, v_s, v_{s+1},$$

$$..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_{k+1}.$$

For k+1 < s < l-1 let v_{s-1} correspond to v_s in the 1:1 mapping.

Finally, suppose $l+1 < s \le m$. Suppose $v_s \in N(v_1)$. Then $v_{s-1} \notin N(v_{l-1}) \cup N(x)$. So suppose $v_s \in N(v_t)$. Then $v_{s-1} \notin N(x)$ for if it were we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{s-1}, x$$

and $v_{s-1} \notin N(v_{l-1})$ or else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_s, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{l-1}, v_{s-1}, v_{s-2}, ..., v_l, x$$

So for $l+1 < s \le m$, let v_{s-1} correspond to v_s in the 1:1 mapping.

We claim we have found a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{l-1}) \cup N(x)) - \{v_1, v_t, v_{l-1}, x\}$. Clearly $v_1, v_t, v_{l-1}, x \notin N(v_{l-1}) \cup N(x)$. We have shown a 1:1 mapping from $N(v_1) \cup N(v_t)$ to a subset S of $V(G) - (N(v_{l-1}) \cup N(x))$. We now claim $v_1, v_t, v_{l-1}, x \notin S$.

Suppose $v_1 \in S$. Then $v_1 = v_{s-1}$ or v_s where $v_s \in N(v_1) \cup N(v_t)$. But $v_1 = v_s$ implies s = 1 and $v_1 = v_{s-1}$ implies s = 2 > k + 2, both contradictions. Thus $v_1 \notin S$.

Now suppose $v_t \in S$. Then $v_t = v_{s-1}$ or v_s for some s. But $v_t = v_{s-1}$ implies s = t+1 > k+2 and $v_t = v_s$ implies s = t, both contradictions. Thus $v_t \notin S$.

Next suppose $v_{l-1} \in S$. Then $v_{l-1} = v_{s-1}$ or v_s for some s. But $v_{l-1} = v_{s-1}$ implies s = l and $v_{l-1} = v_s$ implies s = l - 1, both contradictions. Thus $v_{l-1} \notin S$.

Finally, $x \notin S$ since all the image points are on P and $x \notin P$. We get

$$(p-3)/2 < |N(v_1) \cup N(v_t)|$$

$$\leq |V(G) - (N(v_{l-1}) \cup N(x)) - \{v_1, v_t, v_{l-1}, x\}|$$

$$$$

a contradiction.

Case 2: Now suppose l = m. Then x is not adjacent to any v_s where $s \neq k, l$. We look at two cases for t, where, as in Case 1, v_t is the vertex with the lowest subscript so that v_1 is adjacent to v_{t+1} and not to v_t .

We claim $t \neq k, k+1, m-1, m$. Now t = k implies v_1 is adjacent to v_{k+1} in which case we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_1, v_2, ..., v_k, x$$
.

Also t = k + 1 implies v_1 is adjacent to v_{k+2} and then we would get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+2}, v_1, v_2, ..., v_{k-1}, v_{k+1}, v_k, x.$$

(Recall $v_{k-1}v_{k+1} \in E(G)$ since G is claw-free.) Now if t = m-1, we have v_1 adjacent to v_m . But then $v_1, v_{m-1}, x \in N(v_m)$. Since G is claw-free and neither v_1 nor v_{m-1} is adjacent to x we must have $v_1v_{m-1} \in E(G)$. But then we will get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_1, v_{m-1}, v_{m-2}, ..., v_{k+1}.$$

Thus $t \neq m-1$. Finally, $t \neq m$ since v_1 is adjacent to v_{t+1} .

Let $v_s \in N(v_1) \cup N(v_t)$. Now if $1 < s \le r$ we have $v_s \in N(v_1)$ by the definition of r. By the definition of k, we have $v_{s-1} \notin N(x)$. Also, $v_{s-1} \notin N(v_{m-1})$ for if it were we would get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_s, v_1, v_2, ..., v_{s-1}, v_{m-1}, v_{m-2}, ..., v_{k+1}.$$

Thus for $1 < s \le r$ we have $v_{s-1} \notin N(v_1) \cup N(v_t)$.

Let $v_s \in N(v_1)$. Then for k+1 < s < m-1 we clearly have $v_{s-1} \notin N(x)$. Also, $v_{s-1} \notin N(v_{l-1})$ else we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_1, v_s, v_{s+1}, ..., v_{m-1}, v_{s-1}, v_{s-2}, ..., v_{k+1}. \\$$

Case 2.1: Suppose t < k. We will show that there is a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{m-1}) \cup N(x))$.

Let $v_s \in N(v_1) \cup N(v_t)$. Clearly $s \neq 1, t$. Now $s \neq k$ since then, on the one hand, if $v_k \in N(v_1)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_{k-1}, v_{k-2}, ..., v_1, v_k, x$$

and on the other hand, if $v_k \in N(v_t)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_{k-1}, v_{k-2}, ..., v_{t+1}, v_1, v_2, ..., v_t, v_k, x.$$

Similarly, $s \neq k+1$ since if $v_{k+1} \in N(v_1)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_1, v_2, ..., v_k, x$$

and if $v_{k+1} \in N(v_t)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_k, x.$$

Next, $s \neq m-1$ since if $v_{m-1} \in N(v_1)$ we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_1, v_{m-1}, v_{m-2}, ..., v_{k+1}$$

and if $v_{m-1} \in N(v_t)$ we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_{t+1}, v_1, v_2, ..., v_t, v_{m-1}, v_{m-2}, ..., v_{k+1}.$$

Finally, we claim $s \neq m$.

If $v_m \in N(v_1)$ we get $\{v_1, v_{m-1}, x\} \in N(v_m)$, but these three vertices are independent contradicting the fact that G is claw-free. If $v_m \in N(v_t)$ then we would have the three independent vertices v_t, v_{m-1}, x all in $N(v_m)$. Thus $s \neq 1, t, k, k+1, m-1$ or m.

We will now consider 2 subcases:

Case 2.1.1: Assume v_{m-1} is adjacent to a vertex v_q with q < k. Now $q \neq k-1$ since if $v_{k-1} \in N(v_{m-1})$ we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, \dots, v_{m-1}, v_{k-1}, v_{k-2}, \dots, v_1$$

Also $q \neq k-2$ since if $v_{k-2} \in N(v_{m-1})$ we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, v_{k+1}, v_{k+2}, ..., v_{m-1}, v_{k-2}, v_{k-3}, ..., v_1.$$

(Note $v_{k-1}v_{k+1} \in E(G)$ since G is claw-free.) Thus q < k-2.

Consider $v_s \in N(v_1) \cup N(v_t)$. We have already shown that $s \neq 1, t, k, k+1, m-1$ or m. We now claim $s \neq k-1$ or k-2.

Suppose s = k - 1. If $v_{k-1} \in N(v_1)$ we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_q, v_{q-1}, ..., v_1, v_{k-1}, v_{k-2}, ..., v_{q+1}.$$

If $v_{k-1} \in N(v_t)$, for q < t we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_q, v_{q+1}, ..., v_t, v_{k-1}, v_{k-2}, ..., v_{t+1}, v_1, v_2, ..., v_{q-1},$$

for q > t we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, \dots, v_{m-1}, v_q, v_{q+1}, \dots, v_{k-1}, v_t, v_{t-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{q-1}, \dots, v_{q-1},$$

and for q = t we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{k-1}.$$

Thus $s \neq k - 1$.

Now suppose s = k - 2. If $v_{k-2} \in N(v_1)$ we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, v_{k+1}, ..., v_{m-1}, v_q, v_{q-1}, ..., v_1, v_{k-2}, v_{k-3}, ..., v_{q+1}.$$

If $v_{k-2} \in N(v_t)$, for q < t we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, v_{k+1}, \dots, v_{m-1}, v_q, v_{q+1}, \dots, v_t, v_{k-2}, v_{k-3}, \dots, v_{t+1}, v_1, v_2, \dots, v_{q-1}$$

and for q > t we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, v_{k+1}, ..., v_{m-1}, v_q, v_{q+1}, ..., v_{k-2}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{q-1}.$$

If q = t we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, v_{k+1}, v_{k+2}, ..., v_{m-1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{k-2}.$$

Thus $s \neq k - 2$.

We will now construct a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{m-1}) \cup N(x))$. Let $v_s \in N(v_1) \cup N(v_t)$.

First suppose $1 < s \le r$. Then $v_{s-1} \notin N(v_{m-1}) \cup N(x)$ as above. So for $1 < s \le r$, let v_{s-1} correspond to v_s in the 1:1 mapping.

Next suppose $r+1 \leq s < t$. Since $v_s \notin N(v_1)$ by the choice of t, we have $v_s \in N(v_t)$ and $v_{s+1} \notin N(x)$ by the choice of k. Also $v_{s+1} \notin N(v_{m-1})$ for of it were we would get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, \dots, v_{m-1}, v_{s+1}, v_{s+2}, \dots, v_t, v_s, v_{s-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{k-1}.$$

So for the case $r+1 \le s < t$, let v_{s+1} be the correspondent of v_s .

Now suppose t < s < k - 2. Then $v_{s-1} \notin N(x)$ by the choice of k.

Suppose $v_s \in N(v_1)$. Then $v_{s-1} \notin N(v_{m-1})$ for if it were we would get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_{s-1}, v_{s-2}, ..., v_1, v_s, v_{s+1}, ..., v_{k-1}.$$

Now suppose $v_s \in N(v_t)$. Then $v_{s-1} \notin N(v_{m-1})$ or else we for s > t+1 get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_{s-1}, v_{s-2}, ..., v_{t+1}, v_1, v_2, ..., v_t, v_s, v_{s+1}, ..., v_{k-1}$$

and for s = t + 1 we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_t, v_{t-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{k-1}.$$

So let v_{s-1} be the correspondent of v_s when t < s < k-2.

Finally suppose k+1 < s < m-1. Then $v_{s-1} \notin N(x)$ by the definition of l.

Then if $v_s \in N(v_1)$ we have already shown $v_{s-1} \notin N(v_{m-1})$. Also, if $v_s \in N(v_t)$ we have $v_{s-1} \notin N(v_{m-1})$ for if it were we would get the longer v_m -path

$$v_m, x, v_k, u_{k+1}, ..., v_{s-1}, v_{m-1}, v_{m-2}, ..., v_s, v_t, v_{t+1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{k-1}.$$

So for k+2 < s < m-1, let v_{s-1} be the vertex corresponding to v_s in the 1:1 mapping.

Note that v_t has been used as an image point twice, once for the case $r+1 \leq s < t$ and again where t < s < k-2. We claim to have found a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to $V(G) - (N(v_{m-1}) \cup N(x)) - \{v_{k-2}, v_{k-1}, v_{m-1}, x\}$. Now we have shown that $v_{k-2}, v_{k-1}, v_{m-1}, x \notin N(v_{m-1}) \cup N(x)$. (Recall that at the beginning of Case 2.1.1 we showed that $v_{k-2}, v_{k-1} \notin N(v_{m-1})$. Clearly we have shown a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to a subset S of $V(G) - (N(v_{m-1}) \cup N(x))$ we now claim $v_{k-2}, v_{k-1}, v_{m-1}, x \notin S$.

Suppose $v_{k-2} \in S$. Then $v_{k-2} = v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_{k-2} = v_{s-1}$ implies s = k-1 a contradiction. Also $v_{k-2} = v_{s+1}$ implies s = k-3 < t, so t = k-2 or k-1. But t = k-2 implies v_1 is adjacent to v_{k-1} and t = k-1 implies v_1 is adjacent to v_k , both false. Thus $v_{k-2} \notin S$.

Next suppose $v_{k-1} \in S$. Then $v_{k-1} = v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_{k-1} = v_{s-1}$ implies s = k, a contradiction. Also $v_{k-1} = v_{s+1}$ implies s = k-2 < t, so t = k-1. But t = k-1 implies v_1 is adjacent to v_k , a contradiction. Thus $v_{k-1} \notin S$.

Now suppose $v_{m-1} \in S$. Then $v_{m-1} = v_{s-1}$ or v_{s+1} for some s with $v_s \in N(v_1) \cup N(v_t)$. But $v_{m-1} = v_{s-1}$ implies s = m and $v_{m-1} = v_{s+1}$ implies s = m - 2 < t, both contradictions. Thus $v_{m-1} \notin S$.

Finally suppose $x \in S$. Then x is the image point of some $v_s \in N(v_1) \cup N(v_t)$. But all the image points are on P and $x \notin P$. Thus $x \notin S$.

We get

$$(p-3)/2 - 1 < |N(v_1) \cup N(v_t) - v_{t-1}|$$

$$\leq |V(G) - (N(v_{m-1}) \cup N(x)) - \{v_{k-2}, v_{k-1}, v_{m-1}, x\}|$$

$$$$

a contradiction.

Case 2.1.2: So we can assume v_{m-1} is not adjacent to any vertex v_q with q < k.

First suppose $s \leq k-1$. Then $v_s \notin N(x)$ by the choice of k and by hypothesis $v_s \notin N(v_{m-1})$. Thus for $s \leq k-1$, let v_s be the vertex corresponding to v_s in the 1:1 mapping.

Next suppose k+1 < s < m-1. Then $v_{s-1} \notin N(x)$ by the choice of l.

Suppose $v_s \in N(v_1)$. Then $v_{s-1} \notin N(v_{m-1})$ as above. So suppose $v_s \in N(v_t)$. Then $v_{s-1} \notin N(v_{m-1})$ for if it were we would get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_{t+1}, v_1, v_2, ..., v_t, v_s, v_{s+1}, ..., v_{m-1}, v_{s-1}, v_{s-2}, ..., v_{k+1}.$$

So for k+1 < s < m-1 let v_{s-1} correspond to v_s in the 1:1 mapping.

We claim we have shown the existence of a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{m-1}) \cup N(x)) - \{v_1, v_t, v_{m-1}, x\}$. Note that $v_1, v_t, v_{m-1}, x \notin N(v_{m-1}) \cup N(x)$. Clearly we have shown a 1:1 mapping from $N(v_1) \cup N(v_t)$ to a subset S of $V(G) - (N(v_{m-1}) \cup N(x))$. We now claim $v_1, v_t, v_{m-1}, x \notin S$.

First suppose $v_1 \in S$. Then $v_1 = v_s$ or v_{s-1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_1 = v_s$ implies s = 1 and $v_1 = v_{s-1}$ implies s = 2 > k+1, both contradictions. So $v_1 \notin S$.

Next suppose $v_t \in S$. Then $v_t = v_s$ or v_{s-1} for some $v_s \in N(v_1) \cup N(v_t)$. But if $v_s = v_t$ we get s = t, a contradiction and if $v_t = v_{s-1}$ we get s = t+1 > k+1, so t > k, again a contradiction. Thus $v_t \notin S$.

Now suppose $v_{m-1} \in S$. Then $v_{m-1} = v_s$ or v_{s-1} for some s. But $v_{m-1} = v_s$ implies s = m-1 and $v_{m-1} = v_{s-1}$ implies s = m, both contradictions. Thus $v_{m-1} \notin S$.

Finally suppose $x \in S$. Then $x = v_s$ or v_{s-1} , but $x \notin P$. So $x \notin S$.

We get the following:

$$(p-3)/2 < |N(v_1) \cup N(v_t)|$$

$$\leq |V(G) - (N(v_{m-1}) \cup N(x)) - \{v_1, v_t, v_{m-1}, x\}|$$

$$$$

a contradiction.

Case 2.2: Suppose k + 1 < t < m - 1.

We will show that there is a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{m-1}) \cup N(x))$.

Recall $v_s \in N(v_1) \cup N(v_t)$. Clearly $s \neq 1$ or t.

We claim $s \neq k, m-1$ or m.

We first claim $s \neq k$. If $v_k \in N(v_1)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{k+1}, v_{k-1}, v_{k-2}, ..., v_1, v_k, x$$

and if $v_k \in N(v_t)$ we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{k-1}, v_{k+1}, v_{k+2}, ..., v_t, v_k, x.$$

(Recall that $v_{k-1}v_{k+1} \in E(G)$ since G is claw-free.) Thus $s \neq k$.

Next, we claim $s \neq m-1$. If $v_{m-1} \in N(v_1)$ we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_1, v_2, ..., v_{k-1}$$

and if $v_{m-1} \in N(v_t)$ we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_t, v_{m-1}, v_{m-2}, ..., v_{t+1}, v_1, v_2, ..., v_{k+1}.$$

Thus $s \neq m-1$.

Finally we claim $s \neq m$. If $v_m \in N(v_1)$, we get $v_1, v_{m-1}, x \in N(v_m)$. But these three vertices are independent, a contradiction to the fact that G is claw-free. Also if $v_m \in N(v_t)$, we get $v_t, v_{m-1}, x \in N(v_m)$ and again these are independent contradicting the fact that G is claw-free. Thus $s \neq m$.

Let $v_s \in N(v_1) \cup N(v_t)$ with t < s < m-1. We have already shown that if $v_s \in N(v_1)$, then for k+1 < s < m-1 we have $v_{s-1} \notin N(v_{m-1}) \cup N(x)$. In particular, if s = t+1 then $v_{s-1} \notin N(v_{m-1} \cup N(x))$. So suppose $v_s in N(v_t)$ with t+1 < s < m-1. Then by the choice of l, $v_{s-1} \notin N(x)$ and $v_{s-1} \notin N(v_{m-1})$ for if it were we would get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{s-1}, v_{m-1}, v_{m-2}, ..., v_s, v_t, v_{t-1}, ..., v_{k+1}.$$

Thus, if $v_s \in N(v_1) \cup N(v_t)$ with t < s < m-1 we have $v_{s-1} \notin N(v_{m-1}) \cup N(x)$. We now consider two cases:

Case 2.2.1: Assume v_{m-1} is adjacent to some vertex v_q where q < k. Then as in Case 2.1.1, $q \neq k-2, k-1$.

Suppose $v_s \in N(v_1) \cup N(v_t)$. We have already shown that $s \neq 1, t, k, m-1$ or m. We now claim $s \neq k-1$ or k-2. Now $v_{k-1} \notin N(v_1)$ for if it were we would get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_q, v_{q-1}, ..., v_1, v_{k-1}, v_{k-2}, ..., v_{q+1}$$

and $v_{k-1} \notin N(v_t)$ else we get the longer v_m -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{k-1}, v_t, v_{t-1}, ..., v_k, x.$$

Thus $s \neq k-1$.

Next $v_{k-2} \notin N(v_1)$ for if it were we would get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, v_{k+1}, v_{k+2}, ..., v_{m-1}, v_q, v_{q-1}, ..., v_1, v_{k-2}, v_{k-3}, ..., v_{q+1}$$

and $v_{k-2} \notin N(v_t)$ else we get the longer v_n -path

$$v_m, v_{m-1}, ..., v_{t+1}, v_1, v_2, ..., v_{k-2}, v_t, v_{t-1}, ..., v_{k+1}, v_{k-1}, v_k, x.$$

Thus $s \neq k - 2$.

We will now construct a 1:1 mapping from $N(v_1) \cup N(v_t)$ to $V(G) - (N(v_{m-1}) \cup N(x))$. Recall that $v_s \in N(v_1) \cup N(v_t)$.

First suppose $1 < s \le r$. Then as above $v_{s-1} \notin N(v_{m-1}) \cup N(x)$. So for $1 < s \le r$, let v_{s-1} correspond to v_s in the 1:1 mapping.

Now suppose $r+1 \le s < k-2$ or k < s < t. Then by the choice of t and the definition of $r, v_s \notin N(v_1)$ so suppose $v_s \in N(v_t)$. Now $v_{s+1} \notin N(x)$ by the choice of k. Also $v_{s+1} \notin N(v_{m-1})$ else for s < k-2 we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, \dots, v_t, v_s, v_{s-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{m-1}, v_{s+1}, v_{s+2}, \dots, v_{k-1}$$

and for s > k we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{m-1}, v_{s+1}, v_{s+2}, \dots, v_t, v_s, v_{s-1}, \dots, v_{k+1}.$$

So if either $r+1 \le s < k-2$ or k < s < t, let v_{s+1} be the correspondent of v_s .

Finally suppose t < s < m-1. Then as above, we have $v_{s-1} \notin N(v_{m-1}) \cup N(x)$. So for t < s < m-1, let v_{s-1} be the vertex corresponding to v_s in the 1:1 mapping.

Note that v_t has been chosen as an image point twice, once for the case k < s < t and again for t < s < m-1. We claim we have found a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to $V(G) - (N(v_{m-1}) \cup N(x)) - \{v_{k-1}, v_{k+1}, v_{m-1}, x\}$. Clearly we have shown a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to a subset S of $V(G) - (N(v_{m-1}) \cup N(x))$. We now claim $v_{k-1}, v_{k+1}, v_{m-1}, x \notin S$.

First suppose $v_{k-1} \in S$. Then $v_{k-1} = v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_{k-1} = v_{s-1}$ implies s = k and $v_{k-1} = v_{s+1}$ implies s = k-2, both contradictions. Thus $v_{k-1} \notin S$.

Next suppose $v_{k+1} \in S$. Then $v_{k+1} = v_{s-1}$ or v_{s+1} for some s. But $v_{k+1} = v_{s-1}$ implies $s = k+2 \le r$ contradicting the fact that r < k, or s = k+2 > t contradicting the hypothesis of Case 2.2 that t > k+1. Also $v_{k+1} = v_{s+1}$ implies s = k, a contradiction. Thus $v_{k+1} \notin S$.

Now suppose $v_{m-1} \in S$. Then $v_{m-1} = v_{s-1}$ or v_{s+1} for some s with $v_s \in N(v_1) \cup N(v_t)$. But $v_{m-1} = v_{s-1}$ implies s = m a contradiction. Also $v_{m-1} = v_{s+1}$ implies s = m-2 < t, but t < m-1 by the hypothesis of Case 2.2. another contradiction. Thus $v_{m-1} \notin S$.

Finally $x \notin S$ since all the image points are on P and $x \notin P$.

Now clearly $v_{m-1}, x \notin N(v_{m-1}) \cup N(x)$ and $v_{k-1}, v_{k+1} \notin N(x)$. We will now show that $v_{k-1}, v_{k+1} \notin N(v_{m-1})$. If $v_{k-1} \in N(v_{m-1})$ we get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_{m-1}, v_{k-1}, v_{k-2}, ..., v_1.$$

Now if $v_{k+1} \in N(v_{m-1})$ we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, \dots, v_1, v_{t+1}, v_{t+2}, \dots, v_{m-1}, v_{k+1}, v_{k+2}, \dots, v_t.$$

Thus $v_{k-1}, v_{k+1}, v_{m-1}, x \notin N(v_{m-1}) \cup N(x)$.

We get

$$(p-3)/2 - 1 < |N(v_1) \cup N(v_t) - v_{t-1}|$$

$$\leq |V(G) - (N(v_{m-1}) \cup N(x)) - \{v_{k-1}, v_{k+1}, v_{m-1}, x\}|$$

$$$$

a contradiction.

Case 2.2.2: So we can assume v_{m-1} is not adjacent to any vertex v_q with q < k.

Let $v_* \in N(v_1) \cup N(v_t)$. We will now construct our 1:1 mapping.

First suppose $s \leq k-1$. Then by the choice of k, $v_s \notin N(x)$ and by hypothesis $v_s \notin N(v_{m-1})$. So for $s \leq k-1$, let v_s be its own correspondent in the 1:1 mapping.

Next suppose k < s < t. Then by the choice of t, $v_s \notin N(v_1)$ so we will suppose $v_s \in N(v_t)$. By the choice of l we have $v_{s+1} \notin N(x)$. Also $v_{s+1} \notin N(v_{m-1})$ for if it were we would get the longer v_m -path

$$v_m, x, v_k, v_{k+1}, ..., v_s, v_t, v_{t-1}, ..., v_{s+1}, v_{m-1}, v_{m-2}, ..., v_{t+1}, v_1, v_2, ..., v_{k-1}.$$

For the case k < s < t, let v_{s+1} correspond to v_s in the 1:1 mapping.

Finally suppose t < s < m-1. Then $v_{s-1} \notin N(v_{m-1}) \cup N(x)$ as we have shown above. So for t < s < m-1, let v_{s-1} be the correspondent of v_s in the desired 1:1 mapping.

Note that v_t has been chosen as an image point twice, once for the case k < s < t and again for t < s < m-1. We claim we have found a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to $V(G) - (N(v_{m-1}) \cup N(x)) - \{v_1, v_{k+1}, v_{m-1}, x\}$.

Clearly we have shown a 1:1 mapping from $N(v_1) \cup N(v_t) - v_{t-1}$ to a subset S of $V(G) - (N(v_{m-1}) \cup N(x))$. We now claim $v_1, v_{k+1}, v_{m-1}, x \notin S$.

First suppose $v_1 \in S$. Then $v_1 = v_s, v_{s-1}$ or v_{s+1} where $v_s \in N(v_1) \cup N(v_t)$. But $v_1 = v_s$ implies s = 1, $v_1 = v_{s+1}$ implies s = 0 and $v_1 = v_{s-1}$ implies s = 2 > t, all contradictions. Thus $v_1 \notin S$.

Now suppose $v_{k+1} \in S$. Then $v_{k+1} = v_s, v_{s-1}$ or v_{s+1} for some s with $v_s \in N(v_1) \cup N(v_t)$. But $v_{k+1} = v_s$ implies $s = k+1 \le k-1$, a contradiction. Next $v_{k+1} = v_{s-1}$ implies s = k+2 > t, but t > k+1 by the hypothesis of Case 2.2. Finally $v_{k+1} = v_{s+1}$ implies s = k, a contradiction. Thus $v_{k+1} \notin S$.

Next suppose $v_{m-1} \in S$. Then $v_{m-1} = v_s, v_{s-1}$ or v_{s+1} for some s. But $v_{m-1} = v_s$ implies s = m-1 and $v_{m-1} = v_{s-1}$ implies s = m, both contradictions. Also $v_{m-1} = v_{s+1}$ implies s = m-2 < t, but t < m-1 by the hypothesis of Case 2.2. Thus $v_{m-1} \notin S$.

Finally, suppose $x \in S$. Then x is the image point of some $v_s \in N(v_1) \cup N(v_t)$. But all the image points are on P and $x \notin P$. Thus $x \notin S$.

Now clearly $v_1, v_{m-1}, x \notin N(v_{m-1}) \cup N(x)$ and $v_{k+1} \notin N(x)$. It remains to show that $v_{k+1} \notin N(v_{m-1})$. Now if $v_{k+1} \in N(v_{m-1})$ we get the longer v_m -path

$$v_m, x, v_k, v_{k-1}, ..., v_1, v_{t+1}, v_{t+2}, ..., v_{m-1}, v_{k+1}, v_{k+2}, ..., v_t.$$

Thus $v_1, v_{k+1}, v_{m-1}, x \notin N(v_{m-1}) \cup N(x)$.

We get

$$(p-3)/2 - 1 < |N(v_1) \cup N(v_t) - v_{t-1}|$$

$$\leq |V(G) - (N(v_{m-1}) \cup N(x)) - \{v_1, v_{k+1}, v_{m-1}, x\}|$$

$$$$

a contradiction.

The graph in Figure 1 is 2-connected, claw-free and not homogeneously traceable. Here, $|N(u) \cup N(v)| = 2n + 2 = (p-4)/2$, so the bound in Theorem 6 is almost best possible.

The graph shown in Figure 2 is homogeneously traceable, with $|N(u) \cup N(v)| = (p-2)/2$, so Theorem 3 tells us nothing about this graph, whereas Theorem 6 tells us that it is homogeneously traceable.

Bibliography

- [1] H. J. Broersma, J. Van den Heuvel and H. J. Veldman, A generalization of Ore's theorem involving neighbourhood unions, preprint (1981).
- [2] G. Chartrand, R. J. Gould and S. F. Kapoor, On homogeneously traceable nonhamiltonian graphs, Ann. New York Acad. Sci. 319 (1979), 130-135.
- [3] R. J. Faudree, R. J. Gould and T. E. Lindquester, Hamiltonian properties and adjacency conditions in $K_{1,3}$ -free graphs, Graph Theory, Combinatorics and Applications, Wiley, New York, (1991), 467-479.
- [4] H. Li and C Virlouvet, Neighbourhood conditions for claw-free Hamiltonian graphs, preprint (1990).
- [5] T. E. Lindquester, The effect of distance and neighborhood conditions on Hamiltonian properties in graphs, J. Graph Theory 13 (1989), 335-352.

Figure 1

Figure 2